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Abstract

The phase behavior of colloidal particles embedded in a binary fluid is in-

fluenced by wetting layers surrounding each particle. The free energy of the

fluid film depends on its morphology, i.e., on size, shape and connectivity. Un-

der rather natural assumptions a general expression for the Hamiltonian can

be given extending the model of hard spheres to partially penetrable shapes

including energy contributions related to the volume, surface area, mean cur-

vature, and Euler characteristic of the wetting layer. The complex spatial

structure leads to multi-particle interactions of the colloidal particles.

The dependence of the morphology of the wetting layer on temperature and

density can be studied using Monte-Carlo simulations and perturbation theory.

A fluid-fluid phase separation induced by the wetting layer is observed which is

suppressed when only two-particle interactions are taken into account instead

of the inherent many-particle interaction of the wetting layer.

Key words: colloids, hard-disks, integral geometry, Monte-Carlo simulation,

penetrable spheres, phase-transition, topology, wetting.
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1 Introduction

Colloidal solutions such as paints and soots are extremely common and exhibit many

industrial and technological applications. Due to their mesoscopic size they are also

of great fundamental importance and have provided basic parts of our understanding

of the interaction of particles, for instance. In most cases the electrostatic repulsive

interaction is significantly screened so that the attractive dispersion interaction dom-

inate which finally cause an irreversible aggregation or coagulation. The colloidal

particles stick, i.e., are in point contact at the global minimum of the interaction

potential. But under certain circumstance reversible colloidal aggregation or floc-

culation can be observed. Systematic experiments [1, 2, 3] on colloidal particles

embedded in a near-critical solvent mixture of 2,6-lutidine plus water, for instance,

have revealed that flocculation can be viewed as thermally induced phase separation.

Theoretical work of colloidal partitioning or flocculation in a two-phase solvent fo-

cused on general thermodynamic arguments known from wetting or capillary conden-

sation [4, 5] and more recently on a Ginzburg-Landau approach including a detailed

treatment of the first-order solvent phase transition which is coupled to the colloidal

particles [6, 7]. These works are based on microscopic pair interactions between the

colloidal particles and the molecules in the binary fluid. Thus, the colloids do not

interact directly, but couple to the binary fluid degrees of freedom by preferring one

of the two components.

The phase behavior of colloidal particles embedded in a binary fluid is certainly

influenced by the existence of wetting layers, i.e. by thermodynamically meta-stable

fluid phases stabilized at the boundary of the colloidal particles. Wetting phenomena

appear in multicomponent systems when the components exhibit different interac-

tions with the colloidal particle. In general, when two thermodynamic phases are

close to a first order phase transition the wetting layer may become large and compa-

rable to the diameter of the colloidal particle. The interactions are then determined
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by the free energy of the fluid film between the hard colloidal particles which cause

clustering and eventually a phase separation.

Here, we focus on an effective theory where the binary fluid enters only in one

parameter, namely the thickness L(T, c) of the wetting layer (enriched layer of one

component) which depends on temperature T and concentration c of one component

of the binary fluid. In other words, the colloidal system and the binary fluid are cou-

pled solely by the parameter L(T, c) which can be determined for a single colloidal

particle in a binary fluid without taking into account the interaction with other parti-

cles. The advantage of this approach is the computational simplicity of the influence

of the binary fluid on the interaction of the colloidal particles. This simplicity allows

a more sophisticated treatment of the colloidal interaction itself. Taking into account

not only pair-potentials one can study, for instance, the effect of multiple-particle

interactions due to an overlap of the wetting layer of many particles. This cannot be

neglected when L is large in the complete wetting regime, i.e., close to the critical

point of the binary fluid.

Since the thermodynamic properties of the fluid film depend on its morphology,

i.e., on volume and surface area, a statistical theory should include geometrical de-

scriptors to characterize the size, shape and connectivity of the wetting layer. In

Section 2 we proposed a model for the study of such colloidal suspensions. The col-

loids are resembled by spherical particles (disks in two dimensions) with a hard-core

diameter D and a soft, penetrable shell of thickness L (see Figure 1). Using the radius

R = D/2 + L of the partially penetrable disks one can define the ratio δ = D/(2R)

with 0 ≤ δ ≤ 1, where δ = 1 equals a pure hard-disk system, whereas δ = 0 denotes

an ensemble of fully penetrable disks. The Hamiltonian includes not only the two-

particle hard-sphere potential but also energy contributions related to the volume,

surface area, mean curvature, and Euler characteristic of the layers around the hard

particles.

In Section 3 a perturbation theory and in Section 4 a Metropolis Monte-Carlo al-
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gorithm of partially penetrable disks in two dimensions is presented. The morphology

of the wetting layer as function of temperature and density of the colloidal particles

as well as phase diagrams are discussed.

2 Morphological thermodynamics of colloidal con-

figurations

¿From a geometric point of view one should tie the interaction of the colloidal particles

to the morphology of the wetting layer, for instance, to its volume and surface area.

Each configuration

AN =
N⋃

i=1

BD
R (
xi) . (1)

is assumed to be the union of mutually penetrable d-dimensional spheres BD
R (
x) of

radius R and hard-core diameter D centered at 
x ∈ Ω ⊂ R
d embedded in binary

fluid host component. For convenience, we assume a box Ω of edge length 1 and

periodic boundary conditions so that all lengths are measured in units of the box

size. Typical configurations are shown in Figure 1 for δ = D/(2R) = 0.4. In the

following we consider two dimensional systems with penetrable disks. Depending

on the density ρ of the particles and the size L of the soft shell, i.e. the ratio

δ = 1/(1 + 2L/D) of the radii, the wetting layer (i.e., the white area in Figure 1)

exhibit quit different topological and geometric properties. For instance, the white

disk shells are disconnected (isolated) for δ → 1 due to the hard core interaction,

whereas for small δ ≈ 0 the grains can overlap so that at higher densities ρ connected

structures occur. The morphology of the emerging pattern may be characterized by

the covered volume or the area in two dimensions, the surface area or boundary length,

respectively, and the Euler-characteristic, i.e., the connectivity of the penetrating

grains. Area, boundary length and Euler characteristic have in common that they

are additive measures. Additivity means that the measure of the union A ∪ B of
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two domains (grains) A and B equals the sum of the measure of the single domains

subtracted by the intersection, i.e.,

M(A ∪ B) = M(A) +M(B)−M(A ∩ B) . (2)

A remarkable theorem in integral geometry [8, 9] is the completeness of the so-called

Minkowski functionals. The theorem asserts that any additive, motion invariant and

conditional continuous functional M(A) =
∑d

ν=0 cνMν(A) on subsets A ⊂ R
d , is a

linear combination of the d + 1 Minkowski functionals Mν , (ν = 0, . . . , d) with real

coefficients cν independent of A. The two conditions of motion invariance and con-

ditional continuity are necessary for the theorem, but they are not very restrictive in

most physical situations. Intuitively, conditional continuity expresses the fact that

an approximation of a convex domain K by convex polyhedra Kn, for example, also

yields an approximation of M(K) by M(Kn). The property of motion-invariance

means that the morphological measure M of a domain A is independent of its lo-

cation and orientation in space. Thus, every morphological measure M which is

additive (motion-invariant and continuous), i.e., which obeys relation (2) can be writ-

ten in terms of Minkowski functionals Mν , which are related to curvature integrals

and do not only characterize the size but also shape (morphology) and connectivity

(topology) of spatial patterns. In the three-dimensional Euclidean space the family

of Minkowski functionals consists of the volume V = M0, the surface area S = 8M1

of the pattern, its integral mean curvature H = 2π2M2, and integral of Gaussian cur-

vature. In two dimension they are given by the area F = M0, the length U = 2πM1

and the curvature integral, i.e., the Euler characteristic χ = πM2 of the boundary.

In other words, the Minkowski functionals are the complete set of additive, morpho-

logical measures. We assume, that the energy of a configuration is a morphological

measure of the wetting layer, i.e., an additive functional of the fluid films surrounding
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each particle. Thus, the Boltzmann weights are specified by the Hamiltonian

H(AN) =

N∑
i�=j=1

V (
xi, 
xj) +

d∑
ν=0

hν

(
Mν

(
N⋃

i=1

BD
R (
xi)

)
−NMν(B

D
R )

)
(3)

which is a linear combination of Minkowski functionals of the configurations and a

pair potential

V (
xi, 
xj) =

{
0 |
xi − 
xj | > D

∞ |
xi − 
xj | ≤ D
(4)

between two colloidal particles located at 
xi and 
xj . For convenience we assume a

pure hard-core interaction. We emphasize that the Hamiltonian (Eq. (3)) constitutes

the most general model for composite media assuming additivity of the free energy of

the homogeneous wetting layer. The interactions between the colloidal particles are

given by a bulk term (volume energy), a surface term (surface tension), and curvature

terms (bending energies) of the wetting layer.

We define the packing fraction η = π
4
D2ρ = xδ2 and the normalized density

x = ρπR2 of the disks. The closest packing fraction is ηCP = π
2
√

3
or xCP = ηCP/δ2,

i.e., xCP (δ = 0.4) ≈ 5.67. Since we are not interested in the solid-liquid phase

transition of hard disks but in a fluid-fluid transition induced by the wetting layer

we focus on densities well below xCP . Depending on the ratio δ it is possible to have

multiple-overlapps of disks. In particular, two disks can overlapp iff δ < 1, three

iff δ <
√
3/2 ∼ 0.866, and four iff δ < 1/

√
3 ∼ 0.577. If δ < 1/2 a proliferation of

possible overlapps occur. In this limit a virial expansion of the Minkowski functionals

in the density is not useful anymore and the interaction has manifestly many-body

character. Therefore, we focus in this paper on δ = 0.4 in comparision with δ = 1

and δ = 0 as limiting cases.

3 Perturbation theory

Because of the proliferation of multibody potentials, an exact evaluation of the par-

tition function for the Hamiltonian (3) appears to be unmanagable for d ≥ 2. For
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the sake of comparison with Monte-Carlo simulations presented in the next section,

we calculate here the thermodynamic properties and phase diagram of the model

by simple first-order thermodynamic perturbation theory [12]. This approximation

keeps the geometrical and topological aspects of the model intact. As a reference

system, we use the hard-sphere fluid and solid. The free energy is estimated as

βF (T, ρ) = βFHS(ρ) + β < U >HS (ρ) (5)

where FHS(ρ) is the free energy of the hard-sphere system at density ρ, and < U >HS

(ρ) is the average value of the morphological part of the Hamiltonian (3), computed

in the hard-sphere reference system. Thus, keeping only the first two terms in a high-

temperature expansion of the free energy amounts to replacing the configurational

integral in the partition function by exp {−β < U >HS} which yields a lower bound.

The equation of state for hard disks is given by the Padé approximation from Hoover

and Ree (1969) for the free energy [13]

βFHS

N
= log

(
ρΛ2
)− 1 + bρ

1− 0.28bρ+ 0.006b2ρ2

1− 0.67bρ+ 0.09b2ρ2
(6)

where Λ is the mean thermal de Broglie wavelength and b = π
2
D2. The packing

fraction above the freezing transition, i.e., for large values of ρ, can be calculated by

the free volume theory.

The perturbation energy < U >HS (ρ) =
∑d

ν=0 hν

(
M̄ν(x)−NMν(B

D
R )
)
in Eq.

(5) is given by the average values M̄ν(x) of the Minkowski functional in the hard-

sphere reference system. In general, the average values of the Minkowski functionals

for correlated disks of radius R are given by

M̄0(x) = 1− e−xf(x,c(n)) ,

M̄1(x) = xu(x, c(n))e−xf(x,c(n)) ,

M̄2(x) = x
(
e(x, c(n))− x

(
u(x, c(n))

)2)
e−xf(x,c(n)) ,

(7)

where the functions f(x, c(n)), u(x, c(n)) and e(x, c(n)) depend on the normalized den-

sity of disks x = ρπR2 and the hierarchy of correlation functions c(n)(
x1, . . . , 
xn)
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of the centers of the disks. In lowest order, i.e., for an approximation by a Gauß-

Poisson process one obtains the correlated average of the intersectional area, bound-

ary length, and integral curvature in terms of the two-point correlation function g(
r)

with c(2)(
r) = (g(r)− 1)ρ2:

f(x) = 1− 1
2ρ

∫
R

d
rc(2)(
r)

(
1− 2

π
arcsin |�r|

2R
− 2

π
|�r|
2R

√
1−

(
|�r|
2R

)2
)

u(x) = 1− 1
2ρ

∫
R

d
rc(2)(
r)
(
1− 2

π
arcsin |�r|

2R

)
e(x) = 1− 1

2ρ

∫
R

d
rc(2)(
r)Θ(2R− |
r|) .

(8)

For a Poisson distribution with g(
r) = 1 one obtains f (P )(x, c(n)) = u(P )(x, c(n)) =

e(P )(x, c(n)) = 1. For a hard-core process approximated by the correlation function

the mean values

g(
r) =

{
0 |
r| < D

1 |
r| ≥ D
(9)

one obtains with δ = D/(2R) < 1

f (hc)(R,D) = 1 + x
2

(
1− 2

π
δ
√
1− δ2(1 + 2δ2)− 2

π
(1− 4δ2) arccos δ

)

u(hc)(R,D) = 1 + x
(
1− 2

π
δ
√
1− δ2 − 2

π
(1− 2δ2) arccos δ

)

e(hc)(R,D) = 1 + 2xδ2 .

(10)

¿From Eqs. (5), (6), (7), and (10) it is possible to derive all thermodynamic properties

of the system needed to construct the phase diagram. In the limit δ = 0 one recovers

the equation of state for an ideal gas of overlapping disks.

4 Monte-Carlo algorithm for overlapping disks

With the definition (3) of the Hamiltonian H(A) for a configuration A = ∪iB
D
R (
xi)

of partially penetrable disks BD
R (
xi) it is possible to perform directly Monte-Carlo
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simulations. Although lattice models based on the morphological Hamiltonian (3)

were defined and extensive computer simulations have been performed for complex

fluids such as colloidal dispersions and microemulsions [15], not many continuum

models are studied yet. A model based on correlated partially overlapping grains

(see Figure 1) seems to be a promising starting point to study geometric features of

complex fluids. In this section we describe the implementation of an algorithm in two

dimensions for the parallel machine CM5 using the SIMD (single instruction multiple

data) technique.

In a first step, the Minkowski measures Mν(A) are calculate analytically for a

given configuration AN = ∪N
i=1B

D
R (
xi) of N partially overlapping disks. Then, discs

are added, removed, or shifted which leads to a new configuration A′. The difference

in the Minkowski measures, i.e., in the Hamiltonian H determines the probability

for the acceptance of the new configuration A′ according to the usual Metropolis

dynamics. Unfortunately, the computational cost to evaluate the energy (3) of a

configuration given by Eq. (3) is enormous so that an efficient algorithms is necessary

in order to make Monte-Carlo simulations feasible.

The Minkowski functionals Mν(AN) for the union ∪N
i=1B

D
R (
xi) may be calculated

straightforwardly via the additivity relation (2), i.e., as a sum of multiple overlaps

Mν(AN) =
∑

i

Mν(Bi)−
∑
i<j

Mν(Bi ∩Bj)+ . . .+(−1)N+1Mν(B1 ∩ . . .∩BN ) . (11)

which follows from Eq. (2) by induction. The right hand side of Eq. (11) only

involves convex sets and may be applied together with the definition ofMν to compute

Mν(AN). However, this algorithm becomes inefficient when the amount of overlap

between the augmented balls is excessive, since one has to compute many redundant

and mutually cancelling terms. Thus, this approach works only for δ ≈ 1. Therefore,

we proceed alternatively as described in Ref. [10]. The morphology of a configuration

A (see Figure 1) is unambiguous determined through the borderline between black

and white regions. So it is possible to determine all Minkowski measures Mν with an
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appropriate parameterization together with the local curvature of those borderlines.

For instance, the two-dimensional area M0 can be calculated by applying Gauss’

theorem

M0(A) = 1

2

∫
∂A

x · n dS (12)

where 
n denotes the normal vector to the boundary ∂A at 
x. Accordingly, one

obtains the length of the boundary line M1(A) =
∫

∂A
dS and the Euler characteristic

M2(A) = M1(A)/(πR)+
∑

i χi/(2π) as integrals along the boundary ∂A of a wetting

layer shown in Figure 1, for instance. Here, χi denotes the angle between the two

normals at the intersection point i of two disk boundaries.

In usual Metropolis Monte-Carlo Simulations the initial state converges with a

characteristic time scale τ towards a configuration sampled from the equilibrium

distribution. Whether or not such an equilibrium configuration is reached cannot be

decided a priori and test runs have to be performed, in particular, for this model

where the evaluation of the Boltzmann weights are difficult and extremely CPU-time

expensive. In Figure 2 we show a typical time series N(t) of the number density of

disks. At each sweep every disk were tried to move exactly once. During the first

500 sweeps the systems relaxes from the initial configuration of 4800 disks to the

thermal equilibrium of N = 4272 disks on average. The relaxation time is found to

be τ = 180 sweeps. At larger densities N the relaxation time increases considerably,

so that equilibrium configurations could not be reached for densities x = ρπR2 > 3.

Therefore, it was not possible to verify the existence of a second fluid-fluid phase

transition at larger densities and a triple line predicted by a mean-field approximation

of this model [14].

First, we use the algorithm to compute the average values of the Minkowski mea-

sures Mν(ρ) for β = 0 as function of the density ρ of the particles. In Figure 4(a) the

mean values of the covered area M0 (full circles), the length M1 of the liquid boundary

lines (triangles) and the Euler characteristic M2 (stars) are shown for three different
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ratios, namely δ = 0 (dashed lines), δ = 0.4 (solid lines), and δ = 1.0 (dot-dashed

lines). Whereas for the pure hard-disk system (δ = 1.0) and for completely penetra-

ble disks (δ = 0.0) a difference between the numerical results and theoretical values

could not be found, one can observe deviations from the analytic expression (10) for

large densities ρπR2 > 2 and δ = 0.4. For small densities ρπR2, the configuration

AN consists of isolated disks with negligible overlap of the wetting layers; therefore,

each measure starts out linearly in the number of particles. As the overlap increases,

the volume M0 of the wetting layer saturates and the total boundary length M1 and

M2 of the coverage decreases. M2 changes even its sign, since the curvature of the

singular corners (vertices) at intersections of the wetting layers is negative and starts

to dominate the positive contribution from the spherical parts of the boundary as the

overlap increases (see Figure 1). Negative values of the Euler characteristic M2 are

typical for a highly connected structure with many holes, i.e., undisturbed cavities of

binary fluid.

In Figure 3 the morphological measures of the wetting layer are shown as function

of the chemical potential µ at finite temperature βh0πR
2 = 1/0.355. The disconti-

nuities in the measures indicate clearly a phase transition from a low density fluid

phase (small volume M0 of the wetting layer) to a high density phase (large M0)

where the colloidal particles move freely in a large region formed by the union of the

wetting layers. In Figure 1 a configurational shnapshot close to the critical point at

T̃c = 1/(βπR2h0) = 0.368 and ρcπR
2 = 0.82 is shown, which illustrates both type of

fluid phases. Note, that the typical size of the connected wetting layer (white region)

is much larger than the distance between colloidal particles.

The coexistence of the low-density fluid phase of isolated colloidal particles sur-

rounded by a spherical wetting layer and the high-density fluid phase where the

colloidal particles move freely in a fluid wetting phase is shown in Figure 4(b). For

the existence of the phase separation the inherent multi-particle interactions of the

colloidal particles are crucial. For δ = 0, for instance, a pair-potential approximation
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of the Hamiltonian (3) would not be bounded from below yielding unstable thermo-

dynamic configurations. And for δ << 1 only the multi-particle character of the

Hamiltonian guarantees that for large densities ρ the interaction energy is limited so

that the colloidal particles can move freely within the fluid film.

Although the theoretical expression (10) for the Minkowski measures works well

for densities x < 2, the phase coexistence calculated by perturbation theory is not in

satisfying agreement with the simulation results. Since the main goal of this approach

is an effective theory expressing the thermodynamic properties of the colloidal systems

in terms of the thickness L(T, c) of the wetting layer, one needs to improve the

perturbation theory before the analytic results (10) can be applied to more realistic

situations such as the experiments of silica beads in lutidine-water mixture [1, 2, 3].

The evaluation of the Boltzmann factor is very CPU-time consuming which makes

the simulation difficult, in particular, for large densities. An improved algorithm could

verify the existence of a second fluid-fluid phase transition at larger densities which

is indicated by perturbation theory due to multiple particle interactions of the Euler

characteristic in the Hamiltonian.
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Figure captions

Fig.1: An ensemble of hard colloidal particles (black disks) surrounded by a

fluid wetting layer (white ring). The interaction between the colloids is determined

by the free energy of the fluid film (white region) which may cause a fluid-fluid

phase separation of the hard particles. Thus, the spatial structure of the phases,

i.e., the morphology of the white regions determines the configurational energy which

determines itself the spatial structure due to the Boltzmann factor in the partition

function of a canonical ensemble. A main feature of this model is the occurrence of

different length scales: the clusters of the particles, i.e., the connected white regions

are much larger than the ’microscopic’ radius of the disks and the typical nearest-

neighbor distance within a cluster.

Fig.2: Times series N(t) and corresponding correlation function c(t) where the

first 3000 sweeps were omitted. The temperature T̃ = 0.36 is slightly below the

critical point at T̃c = 0.368 for h0 = 1, h1 = h2 = 0, where T̃ = kBT/(πR2h0) denotes

the reduced temperature.

Fig.3: Isotherms at T̃ = 0.355 (δ = 0.4, h0 = 1, h1 = h2 = 0) of the density

ρ, the covered area F = M0, the length U = 2πM1 of the liquid boundary lines and

the Euler characteristic χ = πM2 measuring the topology of the configurations. One

can clearly observe the phase transition at βµ = 2.1. The functional form of the

morphological measures are typical: χ exhibits a discontinuous jump from positive

to negative values, U has its maximum at the transition, whereas F is a monotonous

increasing function.
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Fig.4: (a) Isotherms at β = 0.0 and δ = 0.4 of the covered area M0 (full circles),

the length M1 (triangles) of the liquid boundary lines and the Euler characteristic M2

(stars). The analytic result for δ = 0.4 (solid lines) given by Eq. (10) works quite well

for densities x < 2. For δ = 0.0 (fully penetrable disks, dashed lines) and for δ = 1.0

(hard disks, dot-dashed line) no differences between numerical determined values

and theoretical predictions could be found. (b) Phase diagram with h1 = h2 = 0,

h0 = 1, and δ = 0.4; m0 = πR2. The dashed line indicates the location of the

coexisting densities. The perturbation result (solid line) based on the isotherms (a)

overestimates the stability of the homogeneous fluid phase yielding a lower critical

temperature.

16



Figure 1

Figure 1: U. Brodatzki, K. Mecke, Morphological Model for Colloidal Suspensions
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Figure 2
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Figure 2: U. Brodatzki, K. Mecke, Morphological Model for Colloidal Suspensions
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Figure 3
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Figure 3: U. Brodatzki, K. Mecke, Morphological Model for Colloidal Suspensions
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Figure 4
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Figure 4: U. Brodatzki, K. Mecke, Morphological Model for Colloidal Suspensions
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